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1 Intro duction

1.1 Motiv ation

An Autonomous Ground Vehicle (AGV) is a fully automated vehiclethat can travel,
unmanned,on a speci ¢ prede ned route without any human intervertion. NASA's Mars
Rover [1]is an AGV usedfor spaceexploration. AGV's are currerntly being usedextensiely
for military surweillance,for example,the PackBot Scoutt and Military R-Gator deweloped
by iRobot [2]. AGV's are alsousedin farming for automated harvesting and treating crops
with fertilizers [3].

The researb and dewelopmert e ort building the AGVs sofar hasbeenon deweloping
vehiclesthat operate on limited terrain conditions and on applications where speedis not an
important issue. Thesevehiclesare not conductive for usein battle elds asthey are not
suitable for o road navigation. The US Congresshas chartered the DefenseAdvanced
Researb Project Agency (DARPA) [4] to bridge this gap and produce Autonomous Robots
that can be usedin the front by 2015. To acceleratethe researb and dewvelopmen of AGVs,
DARPA conductedthe DARPA Grand Challenge2004and 2005competitions [5]. To win,
the participating AGVs had to travel about 150milesin o road conditions within 10 hours.
In the 2004evert no team completedthe course. Sandstormfrom CMU wert the farthest
traveling 7.2 miles. The 2005event waswon by an AGV Stanley from Stanford University.
CajunBot, our teamsvehicle,wasranked fteenth in the racetraveling 17.5miles [6].

The ability to detect and avoid obstaclesis a prerequisitefor successn building
autonomousrobots. In view of the DARPA Grand Challenge,the nearterm goalwas to
dewelop an autonomousground robot which could travel about 150 miles on o -road

conditions within 10 hours with ability to:

1. Detect and avoid natural and man made obstacles.



2. Detect rough terrain conditions to deceleratethe robot to a safespeed.

3. Distinguish betweena moving and stationary obstacles.

In the o -road corntext, the de nition of an obstaclecould be anything that
\obstructs" the motion of the vehicle. It could be a rock, a un-traversableslope, a tree, or a
cli. Having a singleapproad to detect all typesof obstaclesis a major challenge.

Timely processingof sensordata is an important aspect of obstacledetection, asthe
vehicleis expectedto travel at high speeds.A delay in detecting obstaclescould be fatal for
the vehicle. Highly preciseobstacleinformation could be provided if the systemhad no time
constrairts. An ideal systemshould have a proper balancebetweenthe speedand accuracy
of the results.

Proposedapproad usesLID AR's for obstacledetection. High precisionand low cost
were the deciding factorsin favor of LID ARs as opposedto other perceptionsensordike
RADARSs and camera. The LIDAR, LMS 221 from SICK, scansat 75 hertz with 180degree

eld of view and a quarter degreeo set.

1.2 Research Contribution

This thesispresens Team CajunBot's insights and innovations in the eld of terrain
mapping for autonomousground vehicles. This documert dealswith the following aspects of

the Terrain Mapping Algorithm:

1. An obstacledetection systemthat doesnot require stabilization of the sensorsyather

it takesadvantage of bumpsin the terrain to seefarther.
2. A robust systemto deal with sensorerrors like GPS drift, GPS spike.

3. A scalablesystemthat hasa provision for adding additional sensorsan future.

2



1.3 Impact of Research

The proposedterrain mapping and obstacledetection technique would, by enlarge,cut down
the cost of robots as no sensorstabilizers are required. The proposedtechnique could be
usedby any range measuringsensor,not just the LID AR's. Commercially a part of the
algorithm could be usedin LID AR basedsurveying applications.

Howeer, it is not claimedthat the current implemertation would be able to

di erentiate betweenthe nature of obstacles ike the di erence betweena bush and a rock.

1.4 Organization of Thesis

Chapter 2 providesa brief history of the work already donein the eld of terrain mapping

and obstacledetection using LID AR sensors.
Chapter 3 descrikesthe terrain modeling and obstacledetection algorithms.

Chapter 4 discusseshe sensorerrors and other sensorrelated issuesa ecting the

algorithm.
Chapter 5 details various methods usedto test and evaluate the algorithm.

Chapter 6 providesconclusionwith a discussionon the future work that would aid in

improving the current work.



2 Background and Related W ork

2.1 Vehicle Information and Sensors

CajunBot wasthe nalist in the 2004and the 2005ewerts of the DARPA Grand Challenge.
It is built on a MAX IV six wheeledall terrain vehiclewith a 25 hp twin cylinder engine.
The vehicleweighsabout 1200Ibs and canread a top speedof 25 miles/hr. The vehicle
uses\skid steering" medanismto steer,very similar to that usedin the battle tanks [7].

CajunBot usestwo LID AR sensorsthe SICK LMS 291'sfor terrain mapping and
obstacledetection [8]. LID ARs are range measuringdevices.The LID ARs operate on the
principle of \Time of Flight" to measurethe range betweenthe sourceof laserand the
target. The LMS 291'sscan180degreesn a single pass,called a scan. A scancomprisesof
180beams.LID ARs operate at 75 Hz scanrate with a quarter degreeo set betweentwo
consecutie scans. The output of the LIDAR is set of (angle, range) value for ewvery return.
Cost and accuracymake LID ARs a better choicethan other perception sensordike cameras,
radars, etc. Radarsare lessaccuratethan LID ARs [9] and their eld of view is lessthan
that of the LIDARs, the SICK LIDAR hasa 180degree led of view but on an averagea
RADAR hasabout 12 degreeeld of view [10. Camerasare more expensi\e than LID ARs
and are alsomore sensitive to the light.

Two front facing LID AR's are mounted which scanthe terrain for obstacles.The
LIDAR's are mounted to look at 16m and 16.3min front of the vehicle. CajunBot also
performswell, albeit at a reducedspeed,with only one LID AR. Figure 1 depictsthe top
view of the LID AR sensors.

CajunBot usesan INS (Oxford Tednology Solutions RT3102) for autonomous
operation. The INS provides preciseinstantaneouslocation and oriertation of the vehicle.

The accuracyof the INS is enhancedby Star re di erential GPS correction signalsprovided
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Figure 1: Top view of the top and bottom LID ARs

by a C&C TedinologiesC-Nav receiwer. Figure 2 details the mourting of sensorson
CajunBot.

Figure 2 shows the actual picture of the sensoramounted on the metal frame. It is to
be noted that the LIDAR's, GPS and the INS is mourted on the samemetal frame, the
reasonfor which is explainedin the Chapter 3.

Post 2005DARPA Grand ChallengeCajunBot was retired. Focusis on CajunBot-2 -
a 2004 JeepRubicon. Abilit y to navigate at faster speedand having better shacks were the
favorable featuresin selectingCajunBot-2 over CajunBot. The sensorplacemen of
CajunBot-2 was similar to that of CajunBot, the di erence beingall the sensorsvere not on
the samemetal frame. This is not a major issuein CajunBot-2 asit is equipped with better

suspensionsthan CajunBot.
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2.2 Related Work

There are se\eral approahesproposedfor obstacledetection for outdoor robots using
LID AR sensors.Most of theseapproatheswork well when the vehicleis moving slowv on a
relatively at terrain, asthe vehicle (and the sensors)experiencelessbumps. Bumps have
two e ects on the system- 1) Consecutie LID AR scansdo not fall in closegeographical
proximity, and 2) Fusion of INS and LID AR data may not be accurate,as, due to sudden
bumps, the INS data may not give the orierntation of the LIDAR at the time a scanis read.
Due to Step 1 mertioned above, analyzing consecutie LID AR scansto determinethe
changein their geometrywould be ruled out, asthe scansare geographicallyapart. Step 2
would corrupt the transformations usedto translate the obstacleinformation from the sensor
coordinate spaceto the global coordinate space,the detectedobstacleswould be placedin
incorrect locations. Also, Step 2 may introduce non-existen obstacles(false obstacles)as
incorrect INS orientation angleis assaiated to LID AR scans.In caseof slov moving robots,
the a ect of bumpsis less,the consecutie LID AR scansfall in a closespatio-temporal
proximity. Moreover, the consecutie scansde ne a regionwhich is geographicallyclose.
The changein the geometry of thesescanscloselyrelate to changein the geometry of
terrain. The regionin which the changein geometryof the terrain is untraversableby the
robot is termed as an \obstacle" region. Most of the related work presened below is based
on the above mertioned approad, the di erence being the way the \change"in geometry of
scansis computed. Someapproatesuse\discontinuity" of the range data form multiple
scanswhereassomeothers usethe changein slope of the scansto computethe nature of the
terrain.

Many approadhesuseda customizedversionof plane tting algorithm. A planeis t
through a certain number of scans,called the best tting plane, and then, classifythe points

that fall outside the threshold of the plane asobstacles [11]. The problem with this



approad is it dependsheavily of spatial closenes®f the consecutie LID AR scans.Only
when the scansare spatially close,would the best tting plane closelyapproximate the
actual terrain. As the scansdisperse,due to bumps experiencedby the sensorsthe best
tting plane would not represen the actual terrain. Another approad would be to group
the spatially closeLID AR scansand then do the plane tting. Later, in Chapter 3, we
notice that the GPS/INS data is locally accurate. Meaning, we could only comparethe
scansthat are temporally close. Therefore,for this approadt to work the LID AR scans
should be in spatio-temporal proximity. In the Grand Challengethe vehiclesare expectedto
travel at an averagespeedof about 15 mi/hr on o -road terrain. The bumps experiencedby
the vehiclewould certainly dispersethe LID AR scans,thereby negatingthe spatial closeness.

Henrinksenand Krotov [12] categorizedmainly three typesof hazardsdetectedby an
LIDAR - the positive elewation hazard, the negative elewation hazard and the belly hazard.
They further suggesteda slope basedapproad to classifyead of this type of hazard. Their
algorithm, howewer, is unableto detect steepcortinuousslopes. They further suggesthaving
a three dimensionalapproad can be bene cial for analyzing the terrain data.

A \di eren tial depth and slope" approad for fast obstacledetection is suggestedn
[13]. Though they claim this approad to be \fast" and \accurate", it su ers from a major
setbad - all the computations are made basedon vehicle certric co-ordinate system. The
problem arisesas the vehicle cannot have any history of previously detectedobstacles,asthe
detectedobstaclesare relative to the instantaneousposition of the vehicle. Progression
would be to useGPS and INS to compute the global frame of reference.In Chapter 3 we
discussthe problemsassaiated with this approad.

A way of combining stereocameraand LID ARs is suggestedn [14]. The color data
from the camerais mapped to the rangediscortinuity data from the LID ARs for obstacle

detection and terrain classi cation. The experimertal results shav that this approad works



well on rough terrains albetit at low speedswhich is unsatisfactory for successn DARPA
Grand Challenge. At higher speedsthis approad would require good sensorstabilizersto
stabilize the sensorsagainst bumps, otherwise,the cameraand LID ARs might not point at
the samegeographicallocation.

Roberts and Corke [15 suggesteda moving window basedslope computation for
obstacledetection for mining vehicles. This approad works well if the vehicleis traveling at
low speedsthereby causingthe LID AR scansto incremerially sweepthe region. In the
Grand Challenge(GC) cortext, the vehiclesare expectedto travel with an averagespeedof
15 mi/hr on considerablybumpy surfaces.This would causethe scansto be dispersed.
Having sensorstabilizersis a solution but this increaseghe cost of production of the vehicle.

Most of the approatheswork well with positive obstaclesand when the robot is
traveling at relatively low speeds.Negative obstacles like ditchesand steepdownward
slopes, are not detectedeasily by theseapproadhiesdue to the low LID AR data density in
thoseregions. Mounting the LID ARS high and pointing them closeto the vehiclewould
ensurea better data density, but this could decreasdhe distanceat which obstaclesare
detected. Matthies and Rankin [16] suggestusing thermal signaturesfor detecting negative
obstaclesand night navigation. The cost of sud hardware is a major causeof concern.

From the prior researt experiencewe could safely concludethe following.

Unde ned geometricnature of the o road terrain makesit di cult for the
traditional obstacledetection algorithms to detect obstacles.The ambiguity in the de nition
of the obstacle,especially in o road conditions, makesit di cult for the algorithms to
classify obstacles.The dispersedLID AR scansdue to the speedand bumps experiencedby
the robot further complicatethe algorithms. Detection of negative obstacles like ditches, is

a challengebecauseof low data density.



3 Terrain Mo deling and Obstacle Detection

Interpreting the sensordata sud that it represets the geometryof the terrain is termed as
\terrain modeling”. The \mo deled" terrain is further analyzedto determineif a particular
regionis an \obstacle" or not. The processof analyzingthe terrain to generatea set of
obstaclesis termed as\Obstacle Detection".

This chapter summarizesCajunBot's terrain modeling and obstacledetection
algorithm and highlights the speci ¢ featuresthat enablesit to take advantage of vibrations

alongthe height axis, i.e., bumps, to improve its ability to detect obstacles.

3.1 Core Algorithm

The data ow diagramin Figure 3 erumeratesthe major stepsof the terrain modeling and
obstacledetection algorithm. The algorithm takesasinput the vehicle'sstate and LID AR
scans.The vehiclestate data is Itered to attend to spikesin data due to sensorerrors (Step
3.1), and then usedto compute the global coordinatesfor the locations from which the
beamsin a LID AR scanwerere ected (Step 3.2). The global coordinatesform a 3-D space
with the X and Y axescorrespnding to the Easting and Northing axesof UTM
Coordinates, and the Z axis giving the height above sealewvel. Virtual triangular surfaces
with sidesof length 0.20mto 0.40mare createdwith the global points asthe vertices. The
slope of eath sudh surfaceis computed and assaiated with the certroid of the triangle (Step
3.3). A vector product of the sidesof the triangle yields the slope. The height and slope
information is maintained in a digital terrain map, which is anin nite grid of 0.32m
0.32mcells. A small part of this grid within the vicinity of the vehicleis analyzedto
determinewhether ead cell cortains obstacles(Step 3.4). This data is then extracted asa

Terrain ObstacleMap [17].
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Figure 3: Data Flow Diagram (DFD) for the algorithm

Figure 4 graphically depicts data from the stepsdiscussedabove. The gure preseis
pertinent data at a particular instant of time. The grey regionrepreseis the path between
two waypoints. The radial lines emanatingfrom the lower part of the gure show the LID AR
beams. There are two setsof LID AR beams,onefor ead LID AR. Only beamsthat are
re ected from someobject or surfaceare shavn. The scattering of bladk dots represen the
global points, the points whereLID AR beamsfrom somepreviousiteration had re ected.
The gure is scatteredwith triangles createdfrom the global points. Only global points that
satisfy the spatio-temporal constrairts, discussedater, are part of triangles. There is a lag
in the data being displayed. The triangles shown, the global points, and the LID AR beam
are not from the sameinstant. Hence,somepoints that can make suitable triangles are not
shown to form triangles. The shadeof the triangles in Figure 4 represets the magnitude of
slopes. The black triangles have high slope, +/- 90 degreesand the oneswith lighter shades

have much smaller slopes. In the gure, atrash canis detectedas an obstacle,as shavn by
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Figure 4: Virtual triangle visualization

the heapof black triangles. The data was collectedin UL's Horse Farm, a farm with

ungradedsurface. The scattering of dark triangles is a result of the unewen surface.

3.2 Obstacle Detection

A cell is classi ed as an obstacleusing the following steps. First, a cell is taggedasa
“potertial’ obstacleif it satis es one of three criteria. The number of times a cell is

categorizedas a potential obstacleby a criterion is courted. If this count exceedsa
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threshold{a separatethreshold for ead criterion{it is deemedan obstacle. The criteria used

to determinethe classi cation of a cell asa potential obstacleare asfollows:

High absolute slope. A cellis deemedasa potential obstacleif the absolute maximum
slope is greater than 40 degrees.Large objects, sut as, cars, fences,and walls, for
which all three verticesof a triangle canfall on the object, areidenti ed aspotertial
obstaclesby this criterion. The threshold angle of 40 degreeds chosenbecause
CajunBot cannot physically climb sud a slope. Thus, this criterion alsohelpsin

keepingCajunBot away from unnavigable surfaces.

High relativ e slope. A cell is deemedas a potential obstacleif (1) the maximum
di erence betweenthe slope of a cell and a neighbor is greaterthan 40 degreesand (2)
if the maximum di erence betweenthe heighs of the cell and that of its neighbor is
greaterthan 0.23m. This criterion helpsin detecting rocks as obstacleswhen the rock
is not large enoughto registerthree LID AR beamsthat would form a triangle
satisfying the spatio-temporal constrairt. The criterion alsohelpsin detecting large
obstacleswhen traveling on a slope, for the relative slope of the obstaclemay be 90
degreeshut the absoluteslope may be lessthan 40 degrees.The test for height
di erence ensuresthat small rocks and bushesare not deemedas a potertial obstacle.

The height 0.23mis 0.02mmore than the ground clearanceof CajunBot.

High relativ e height. A cell is deemedas a potertial obstacleif the di erence betweenits
height and the height of any of its neighbor is greaterthan 0.23m. This criterion aids

in detecting narrow obstacles,sud as poles,that may registervery few LID AR hits.

The threshold courts of 5, 5, and 12, respectively, are usedfor the three criteria to conrm a

potertial obstacleasan obstacle.

13



As a matter of caution, Step 3.3 disablesany processingwhen the PauseSignalis
activated. This preverts the systemfrom being corrupted if someonewalks in front of the
vehiclewhen the vehicleis paused,as may be expectedsincethe PauseSignalis activated

during startup and in an emergency

3.3 Issues with Bumps and Sensor Stabilization

Bumps along the road have impact on two stepsof the algorithm, Step 3.2, wheredata from
the INS and LIDAR is fusedand, Step 3.3, when data from beamsfrom multiple LID AR
scansare collectedto createa triangular surface. The issuesand solutions for eat of these
stepsare elaborated below.

In order to meaningfully fuseINS and LID AR data it is important that the INS data
give orientation of the LID ARs at the time a scanis read. Sinceit is not feasibleto mourt
an INS on top of a LIDAR, dueto the bulk and costof an INS, the next logical solution is to
mount the two sud that they are mutually rigid, that is, the two units experiencethe same
movemens. There are three generalstrategiesto ensuremutual rigidity betweensensors:(1)
Using a vehiclewith a very good suspensionsoasto dampen suddenrotational movemerns
of the whole body and mourting the sensorsanywherein the body. (2) Mounting the
sensorson a platform stabilized by a Gimbal or other stabilizers. (3) Mounting all sensorson
a single platform and ensuringthat the ertire platform is rigid (i.e., doesnot have tuning
fork e ects). Of course,it is alsopossibleto conbine the three methods.

CajunBot usesthe third strategy. The sensormourting areasof the metal frame is
rigid, strengthenedby trussesand beams.In cortrast, most other GC teamsusedthe rst
strategy and the two Red Teamsuseda comnbination of the rst two strategies.

Strategy 3 in itself doesnot completely ensurethat mutually consisten INS and

LIDAR data will be usedfor fusion. The problem still remainsthat the sensorgyenerate
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data at di erent frequencies.Oxford RT 3102generatesdata at 100Hz,producing data at
10msintervals, whereasa SICK LMS 291 LID AR operatesat 75Hz, producing scans
separatedby 13msintervals. Thus, the mostrecert INS reading available whena LID AR
scanis read may be up to 9msold. Sincea rigid sensormount doesnot dampen rotational
movemerts, it is also possiblethe INS may record a very di erent orientation than the time
whenthe LMS data is recorded. Fusing thesereadingscan give erroneousresults, more so
becausean angular di erence of a fraction of a degreecanresult in a LIDAR beambeing
mapped to a global point se\eral feet away from the correct location.

The temporally orderedqueuesof the middleware, CBWare [17], and its support for
interpolating data help in addressingthe issueresulting from di erencesin the throughput
of the sensors.Instead of fusing the most recen data from the two sensorsStep 3.2
computesglobal points by using the vehicle state generatedby interpolating the state
immediately beforeand immediately after the time whena LID AR scanwasread. Robots
with somemedianism for stabilizing sensorscan fusea LID AR scanwith the most recen
INS data becausehe stabilizing medanism dampensrotatonal movemerts, thus ensuring
that the sensorswill not experiencesigni cantly di erent orientations in any 10msperiod.

Absenceof a sensorstabilizer alsoin uences Step 3.3, wherein triangular surfacesare
createdby collecting global points correspnding to LID AR beams. SinceCajunBot's
sensorsare not stabilized, its successi® scansdo not incremenally sweepthe surface.
Instead, the scansare scatteredover the surfaceas shavn in Figure 5. This makesit
impossibleto createa su cient number of triangular surfacesof sides0.20mto 0.40musing
points from successi® scans(or even ten successi® scans). It is always possibleto create
very large triangles, but then the slope of sud a triangle is not always a good approximation

for the actual slope of its certroid.
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Figure 5: LID AR beamsscattereddue to bumps

3.4 Dynamic Obstacles

The con dence factors assaiated with the algorithm cannot guarartee zerofalse positives
while detecting all \real" obstaclesdue to the GPS drift and related sensorerrors (discussed
in Chapter 4). A solution would be to minimize the false obstacles,identify them and to
eliminate the false positiveswhile not eliminating the true ones. Also, the algorithm needsa
strategy to overcomethe issueof \dynamic obstacles",for example,other vehiclesmoving in
the path.

If the dynamic (moving) obstacles like a competing robots moving in front of the
vehicle,are not ushed from the \obstacle memory" then they would be treated as an
obstacleat ewery location, thereby creating lots of \false" obstaclesin the path. \Changing
obstacles", like the gate which is initially closedand openswhen the vehicleis very closeto
it, would be detectedas an obstacletoo.

Grid Refreshingstrategy is usedby the algorithm to classifyand eliminate the false

positives. This approad also helpsin dealingwith dynamic obstacles.
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TOM grid is a spatio-temporal grid. Only a limited, temporally close,data is kept in
the TOM cells. Apart from putting new data into the TOM cells, the processof binning
involvesrefreshingthe cellsif the existing data and the new data are not temporally close.
This ensuresthe falseobstacles,if any, getsrefreshedperiodically. If in a particular
iteration, dueto corrupted data, the algorithm detectsfalse obstacles,the good data in the
consecutie iterations would invalidate the earlier result.

Further, an accesdime stamp is asseiated to ead cell when new data is put into it.
Cells are agedbasedon its last accesgime stamp. Time di erence of 15 secondssincethe
last accesss usedto agethe cells. Especially for the gate type of scenario,whenthe gateis
closedit would be detectedas an obstacle. Onceit is opened,there would be no LIDAR hits
in the \obstacle"” TOM cells,asthe gate which had obstructed the beamsis now open. After
the 15 secondgime theseTOM cells are refreshedas there are no LID AR hits. Eveniif the
bot is stationary or in motion, the previously detected obstaclesare presened aslong asthe
LIDAR beamsare hitting them.

Essetially this approad doesnot detect a moving obstacle,but Grid Refreshing
handlesthe casewhen the vehicle encourters dynamic obstacles.Using this approad the

trajectory and speedof the moving obstaclescannot be determined.
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4 Sensor Errors

The typesof sensorerrors could be broadly classi ed as

Static Errors. The errorsdueto improper calibrations or mounting of the sensors.

Dynamic Errors. The errorsinducedin the sensorsdue to corrupt input signals.

In regardto terrain mapping and obstacledetection the sourceof sensorerrors could

bein 1) LIDARS and 2) GPS/INS.

4.1 LID AR Related Errors

1. LIDAR Mounting Angles. The mourting angles,alsoknown as Bore-sight angles,is
orientation of the LID AR with respect to the INS. Typically, they are referredto as

roll, pitch and yaw anglesrepreseting the oriertation in 3 axes.

2. LIDAR O sets. The o sets are the distancesfrom the INS to the LID AR. These

valuesare manually measured.

Computing the LID AR mourting anglesand the o set wrt the INS is a potential
sourceof Static Errors [18]. The o set and anglesare usedin Step 3.2 of Figure 3 to
compute the global coordinates of the points wherethe LID AR beamshit. Even a small
error of about 0.5 degreesn measuringthe mounting anglesof the LID AR would o set the
global position of the target by 0.4m at a range of 20 meters.

Three approatesare usedto compute and verify the mourting angles:

1. The Manual Triangulation Approach, whereinthe certer and extreme end beamsare
manually traced and triangulation is usedto computethe mourting anglesof the
sensormwith respect to the INS. This approad takesa considerableamourt of time and

e ort.
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2. The Ground Line Approach, whereinthe the global points on the ground are
computed assuminga particular 'hypothetical’ mounting angle of the sensor.A line
joining thesepoints is called the Ground Line. Line obtained from the actual points of
the LIDAR, referredas Actual Line, is superimposedon the Ground Line. The
mourting anglesof the Actual Line are tuned manually till it overlapswith the
Ground Line. The set of mounting anglesfor which the Ground Line and the Actual
Line overlap are the mounting anglesof the actual sensorwrt the 'hypothetical' one.
This approad requireslesstime and e ort than the previousone, but still involvesthe
processof manual tuning of the mounting angles. Also, this processhasto be repeated

for eat sensorsinceall sensorscannot be tuned at the sametime.

3. The HypothesisVoting Approach, whereinthe bot is run around a set of pre-suneyed
objects of known dimensions.The error function computesthe di erence betweenthe
obsened location and the surveyed location of the objects. Also, the error function
computesthe di erence in the obsened dimensionto the actual dimensionof the
object. The mounting anglesare tuned till the error function reports a near zeroerror.
This approad involves minimum human intervertion and all thesesensorscan be

tuned at the sametime.

4.2 GPS Related Errors

The GPS spike and GPS drift are the typical GPS related errors [19]that fall under the
Dynamic Errors category If not handled correctly, theseerrors would induce false positives
in the system.

1. GPS Spike

GPS spike is the suddenchangein the GPS data in a fraction of a second.Typically,
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Figure 6: Spike in the GPS eleation data

the height measuremenfrom the GPS is more proneto the spike than the location
reading. This error usually occurswhenthe GPS recieweslow or no signalsand the
INS uses'dead-re&oning' to estimate the changein the position. When the GPS
re-acquiresthe signalit correctsitself resulting in the data spike. The graphin

Figure 6 depictsthe spike in the elewation data experiencedby the CajunBot in one of
the NQE runs in the 2005DARPA Grand Challenge. The X-axis of the graph
represets the time axis and the Y-axis is the height (Z) asreported by the GPS. The
graph shows that the height value (Z) changedby 15min a fraction of a second.The
suddenshangein the Z value causeghe Obstacle Detection Algorithm to detect a wall
like obstaclein the path. This error had causedthe CajunBot to stop in the second

National Qualifying Evert (NQE) Run in the 20056DARPA Grand Challenge.

Median Filter in Step 3.2 of Figure 3 cortinuously monitors the data from the INS and
GPS for spikes. If a spike greaterthan a threshold is obsened the data is discarded.

Also, data in the spatio-temporal grid is refreshedto avoid interaction of the good and
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Figure 7. GPS drift

corrupted data.

2. GPS Dirift

GPSdrift is the gradual drift in the GPS position and height data. The drift in the
location is negligible as comparedto that in height. Graph in Figure 7 depicts the
GPSdrift in the height data. The X-axis of the graph is the time axis and the Y-axis
is the height asreported by the GPS. First 60 secondsworth of data in the graphin
Figure 7 is when the vehicleis stationary. For the remaining time the vehicleis

running on a at parking lot at a speedof about 5 m/s.

Graph in Figure 7 shows that even when the vehicleis stationary there is a constart
changein the Z value, asreported by the GPS. When the vehicleis stationary the

maximum di erence in Z value for the samelocation is 0.18 m.

If the GPS/INS data were very precisethen triangles of desireddimensionscould be
createdby saving the global points from Step 3.2 in a terrain matrix, and nding groupsof

three points at a desiredspatial distance. This is not practical becauseof Z-drift, the drift in
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Z valuesreported by a GPS (and thereforeby the INS) over time. When stationary, a drift
of 10cm - 25cm in Z valuescan make even a at surfaceappear uneven.

The eleation(2)-drift issuecan be addressedoy taking into accour the time whena
particular global point was obsened. In other words, a global point is a 4-D value (x, v, z,
and time-of-measuremet). Besidesrequiring that the spatial distancebetweenthe points of
a triangular surfacebe within 0.20mand 0.40m, Step 3.3 alsorequiresthat their temporal

distancebe under three seconds.
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5 Algorithm Testing and Evaluation

5.1 Testing and Tuning

On- eld testing is the bestway to test the algorithm, but it involvestwo major overheads,
rstly the ertire vehicleshould be in a workable condition, right from the medanical
componerts to the electronics,and the sensordo the software. Secondly requiremert of
multiple team menbers, the costinvolved in the logistics and time spert in the process.
Also, uncortrollable issueslike weather conditions may causeunexpected changesin the
testing plans.

The above issuescan be handled by having an o ine, virtual testing ervironmert.
CajunBot's Simulator, CBSim, is a physics-basedsimulator deweloped using the Open
Dynamics Engine (ODE) physicsengine. Along with simulating the vehicle dynamicsand
terrain, CBSim alsosimulates all the onboard sensors.It populatesthe sameCBWare queues
with data in the sameformat asthe sensordrivers. It alsoreadsvehicle cortrol commands
from CBWare queuesand interprets them to have the desirede ect on the simulated vehicle.

O ine-testing and debuggingis further aided by the Playbadk module. This module
readsdata loggedfrom the disk and populates CBWare queuesasseiated with the data.
The order in which data is placedin di erent queuesis determinedby the time stamp of the
data. This ensuresthat the queuesare populatedin the samerelative order. In addition, the
Playbadk module, like the Simulator module, generateshe simulator time queue
represeting the system-wideclock. This simple act of playing badck the loggeddata has
seweral bene ts. In the simplestuse,the data can be visualized (using the Visualizer
module) over and over again, to replay a scenariothat may have occurredin the eld or the
simulator. It o ers the ability to replay a run after a certain milestone,sud asa certain

amourt of elapsedtime or a waypoint is crossed.In a more signi cant use,the playbadk
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Middleware

,,,,,,,,,,,,,,,,,,,,,,,

Figure 8: Componerts involved in the system

module can also be usedto test the core algorithms with archived data. This capability has
beeninstrumental in helping us re ne and tune the algorithm. It is the commonoperating
procedureto drive the vehicle over someterrain (sud asduring the DARPA National
Qualifying Even), playbadk the INS and LID AR data, apply the obstacledetection
algorithm on the data, and then tune the parametersto improve the obstacledetection
accuracy Figure 8 graphically illustrates the various componerts of the CajunBot system.
Tuning and debuggingis a time consumingprocessconsideringthe volume of data
that needsto be analyzed. Just by looking at the numbers output by the software and
tuning/debugging data is an error prone process.lts humanly impossibleto manually dig
into the huge data and decipherthe causeof the error. Having an interface which would
convert this data into graphical form would be the besttool to monitor and analyzethis sort

of data.
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Real-time and o -line debuggingis supported by CBViz, the Visualizer module.
CBViz is an OpenGL graphical program that preserts visual/graphical views of the world as
seenby the system. It accessethe data to be viewed from the CBWare queues.Thus,
CBViz may be usedto visualizedata live during eld tests and simulated tests, aswell as

visualizing loggeddata using the Playbadk module.

5.2 Algorithm Evaluation

The proposedalgorithm is evaluated on the following parameters:

H

. Abilit y to utilize bumpsto detect farther obstacles
2. Percenage of false positivesor true negative results
3. Spaceand Time complexities

4. Scalability

5. Resultson di erent typesof obstacles

6. Sensororientation independence

The algorithm is evaluated on three data sets. Feasibility to test and create

appropriate test caseswvere the primary reasonsto selectthe following test ervironmernts.

1. CajunBot loggeddata from 2005GC nal run.
2. Testingin cortrolled environment on CajunBot-2.

3. Testing in software simulated ernvironment - CBSim.
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Distance at Which Obstacles are Detected (m)

Z-Acceleration of Vehicle (m/s)

Figure 9: Graph showving distanceto detectedobstaclesVs Z-acceleration

5.3 Evaluation on 2005 GC Final Run

Theseare results of post processingthe loggeddata from the 2005GC Final Run. The

vehicletraveled about 17.6 miles beforeit was stopped due to a medanical failure.

1. Bumps Utilization

Figure 9 presens evidencethat the algorithm's obstacledetection distanceimproves
with roughnessof the terrain (bumps). The gure plots data loggedby CajunBot
traveling at 7m/s through a distance of about 640m of a bumpy sectionduring the
2005GC Final. The X-axis of the plot represeis the absoluteaccelerationalongthe
height (Z) axis at a particular time. Greater accelerationimplies greater bumps. The

Y-axis represets the largestdistancefrom the vehicleat which an obstacleis recorded
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in the Terrain ObstacleMap. The plot is the result of pairing, at a particular instance,
the vehicle'sZ accelerationwith the furthest recordedobstaclein the Terrain Obstacle
Map (which neednot always be the furthest point wherethe LID AR beamshit). The
plot shows that the obstacledetection distanceincreasesalmost linearly with the
seerity of bumps experiencedby the vehicle. The absolutevertical accelerationwas
newr lessthan 0.1 m/s? becausethe vehicletraveledat a high speedof 10 m/s on a
rough terrain. That the onboard video did not shov any obstacleson the track and
that the obstacledetector alsodid not placeany obstacleson the track leadsus to

beliewve that the method did not detect any false obstacles.

. Scalability

CPU Utilization. The average percerniage CPU utilization', asreported by the

Linux utilit y top, sampledevery second.

Increase in CPU. The percenage increasein CPU utilization goingfrom one

LIDAR con guration to a con guration of two LID ARs.

Table 1 givesthe data whenthe terrain was not very bumpy, whereasTable 2 preserts
data for bumpy terrain in the actual Grand ChallengeFinal Run. In both the
situations, adding another LID AR reducesthe obstacledetectiontime at a higher rate
(38-48%)than the increasein the CPU utilization (22-28%). This implies our
algorithm scaleswell with additional LID ARs, sincethe bene ts of adding a LID AR

exceedgshe costs.

Comparing data acrossthe Table 1 and Table 2 further substartiates that our
algorithm takesadvantage of bumps. Comparethe data for the singleLLID AR

con gurations in the two tables. The CPU utilization is lower when the terrain is
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Table 1: E ect of number of LID ARs, with low averagebumps: 0:11m=s?

# LIDARs 1 2
CPU Utilization | 12.4%| 15.9%
Increasein CPU 28.23%

Table 2: E ect of number of LID ARs, with high averagebumps: 0:24m=s?

# LIDARs 1 2
CPU Utilization | 11.2%| 13.7%
Increasein CPU 22.32%

bumpy. The sameis true for the dual LID AR con guration. The moreinteresting point
is that adding another LID AR doesnot lead to the sameincreasein CPU utilization
for the two forms of terrain. For the bumpy terrain the CPU utilization increasedby

22.32%,which is signi cantly lessthan the 28.23%increasefor the smoother terrain.

. Accuracy of Results

In cortext of the GC Final Run, number of false obstacleson the track is a parameter
to analyzethe accuracyof the results. In this casewe would con ne our analysisto the
track asthe outside region had many bushes,trees, etc, which would be potertial
obstacles.It is di cult, in this casein particular, to di erentiate betweenthe real

obstaclesand the falseones.

Just about that time CajunBot was started, weathertook a turn. The winds picked
up, blowing through the dry lake bed and causinga big sand storm. Analysis of the
loggeddata revealedhow CajunBot weatheredthe sandstorm. The on-board video
shov CajunBot completely engulfedin the sand. That led it to see'false obstacles',

forcing it to go out of the track to avoid them. Howe\er, after the sand storm cleared,
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Figure 10: Falseobstaclesdue to the sandstorm

the video shavs CajunBot running very much along the middle of the track, and
passingstalled or stopped vehicles. The loggeddata shows absolutely zerofalse
obstaclesthroughout the run after the storm, even in areaswherethe vehicle

experiencedseere bumps.

Figure 10 shows the screenshot of CajunBot visualizer for the 2005GC Final Run
betweenwaypoints 41 and 44. The gray patch is the route and the numbered dots are
the rddf waypoints provided by the GC o cials. The greendots are the trail marks of
the vehicle. This is the actual path traveledby the vehicle. The yellow/orange grids
are the LID AR beams. The blue grid is the TOM and the red dots are obstacles,in

this casethe dust particles.

As seenin Figure 10 the vehiclewert about 30m from the certer of the track. This
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Figure 11: No falseobstacles
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Figure 12: Sthematic view of CajunBot-2

was due to the 'false obstacles'it asseenon accoun of the sandstorm. Figure 11

depictsthe path taken by the vehiclewhenthere were no false obstacleson the track.

5.4 Testing in Controlled Environmen t

Post 2005GC, CajunBot wasretired. The following test was done on our proposederiry in
the next Grand Challenge,the CajunBot-2 - successofor CajunBot. Focusingon the future
we are concerrating our e orts on RaginBot which is a 2004 JeepRubicon with a much
better suspensionsand the ability to drive faster than CajunBot. Figure 12 shavs sthematic

of CajunBot-2 with the sensoramounted.
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Figure 13: Experimertal setup to study the e ects of bumps

Exp erimen tal Setup. The Figure 13 details the experimertal setup createdto study the
e ects on bumps on the accuracyof obstacledetection. Bumps were createdarti cially using
cemen bagsand obstacles(two cones)were placedat 45 metersfrom the rst cemen bag.
Four runs were made on the sametest track at 7m/s two with bumps and two without
bumps.

Results. The Figure 14 and Figure 15 are the screen-shotof CajunBot visualizer when the
obstaclesare rst recordedby the Terrain ObstacleMap, with and without bumps. The blue

grid is the Terrain ObstacleMap Grid (TOM) and the red blocks are the recordedobstacles.
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Figure 14: Visualizer shaving obstacledetection with bumps

The orangle/yellow lines are the laserbeams.

1. Bumps Utilization

The Figure 14 and Figure 15 substartiate the obsenation that the algorithm detects
further obstaclesin the presenceof bumps. In the presenceof bumps the obstacleis
rst recordedin the TOM at 42.6mfrom the vehicle whereasthe distancereducesto
28.5min the absenceof bumps. On comparingthe valuesin Table 3 we concludethat
bumps at averagespeedsdo not result in false obstacles,nor do they hamper the

accuracyof location of the obstaclesasin either of the caseshe obstacleis detectedin
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28 5m

Figure 15: Visualizer shaving obstacledetection without bumps
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Table 3: Comparing runs with and without bumps

Bumps | No Bumps
Distanceto the Detected Obstacle | 42.6m | 28.5m
False Obstacles Nil Nil

Table 4: Scalability of the algorithm

# LIDARs | CPU for step 3.2 | CPU for step 3.3,3.4 | Total CPU
1 1 2.6% 11.9% 14.5%
2 2 2.6% 11.6% 16.8%

the sameTOM cell. The granuality of a TOM cell is 0.32m, hence,the maximum
possibleerror in accuracycould be 0.32m,which is acceptableasit would point to the

sameTOM cell.

. Scalability. To analyzethe scalability, the algorithm can be logically decompsedinto
two stepsbasedon the computationsinvolved: 1) The sensor-spci ¢ computation,
and, 2) The data-speci ¢ computation. Step 3.2 in Figure 3 is the sensor-spci c
computation. This step involvesthe transformation computation required to corvert
ewvery beamto a correspnding global point. The cost of this step increaseswith ewvery
additional sensor.Steps3.3 and 3.4 in Figure 3 are data speci c. The computation
involved Steps3.3 and 3.4 are inversely proportional to the data density. With higher
data density it requireslessercomputationsto form the necessangtriangles. Also,
Steps3.3and 3.4 are independert on the sourceof the data. For every additional
sensorthe computational cost of Step 3.2 increasesand the computation cost of Steps
3.3, 3.4 decreasesTable 4 represets the data for one of the test runs. It substartiates
the claim that the CPU utilization for Step 3.2 increaseswhereasthat for Steps3.3,

3.4 decreasesvith every additional LID AR. This feature of the algorithm helpsin
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scalability aswith ewery additional sensorthere is a linear increasein CPU cost.
Looking at the data in Table 4, the approximate CPU Utilization for Obstacle

Detection Module using'n' sensorsvould be:

CPU_Utilization = ((n 26) + 119)%

3. Accuracy of Results

The loggeddata analysisrevealedabsolutely no false obstacles.The experimert was
repeatedwith the speedvarying from 5m/s to 15m/s with bumps, and there were no

false obstacles.Also, the conewas detectedin the sameTOM cell every time.

CajunBot Vs. RaginBot . The primary di erence betweenCajunBot and RaginBot in the
cortext of obstacledetectionis due to the following three factors:

1. CajunBot-2 is equippped with standard shack absorkers while CajunBot doesnot
have any.

2. The top speedof CajunBot is signi cantly lesserthan that of CajunBot-2.

3. Sensorsare mournted on a samerigid frame on the CajunBot. In CajunBot, the
sensorsare physically closeand alsoin closeproximity to the INS. In RaginBot, currertly,
one sensoris mourted on the roof, closeto the INS, and the secondoneon the front bumper.

Issuel mertioned above dampensthe suddenshacks experiencedby the sensorsand
hence,would be a reasonfor lesserfalseobstaclesin CajunBot-2. The high speed,mertioned
in Issue2, would be a potertial reasonfor induced error in Step 3.2 of the Figure 3, asthe
timestamping is done at every scanlevel as opposedto ewvery beamlevel. At a speedof
15m/s the vehicle could have travelled 0.2m betweenthe time the rst and last beamsof a
single scanare produced. This error in recording the timestamp at every scanwould hamper

the accuracyof global points computations (Step 3.2). The solution for this would be to
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timestamp every beamas opposedto a scan. The mourting of sensorson CajunBot-2,
mertioned in Issue3, might lead to a 'tuning fork' sort of vibrations on the sensormourted
on the bumper. The INS reading might not correspnd to the actual state of the sensor,

which inturn might be a possiblereasonfor the error inducedin Step 3.2.

5.5 Testing in Simulated Environmen t - CBSim

The currernt versionof simulator doesnot support creating bumpy terrain. Sothe e ects of
bumpsis best studied in real eld testing and by analysisof the log data. The simulators
highlight, with respect to obstacledetection module, is its ability to the study the e ects of

di erent sensororientations on the algorithm.

1. SensorOrientation Independence

When multiple sensorsare used,the proposedalgorithm doesnot require any
particular mourting of the sensors.Though it is ideal to have the sensorsat 0.3m
separationon at ground sothat the in Step 3.3 more triangles are formed due to

better temporal data density, it is not a requiremern.

Many teamsin the 20056DARPA Grand Challengerequired a particular mourting

con guration of sensors.Team GRAY [2(Q] required moving sensorghat were
mourted vertically. Team GRAY's algorithm was tightly coupledto the mourting of
their sensorsthey usedthe discortinuities in a singlescanin the direction of vehicle's
motion to detect obstacles.This approat may not work if the sensorsare mourted
horizortally asthere would no data to detect discortinuities in the headingdirection.
Red Team [2]] required two of their LID AR's stacked up parallely near the from

bumper to detect the changein slope.

The following test was performedto prove the sensororientation independenceof the
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Figure 16: Obstacledetection with sensorcon guration-1

proposedalgorithm. In CBSim, the algorithm was run multiple times changing
nothing but the LID AR sensor'sorientation. The terrain, path, position and type of
obstacleswere samein betweenmultiple runs. The results were obsened on CBViz,

the graphical interfaceto CBSim.

Figure 16 and Figure 17 depictsthe screenshots of the visualizer, CBViz, for the
experimert. It can be seenthat the orientation and position of the LID ARs is di erent

in both the runs.

Figure 16 and Figure 17 point to the fact that the samealgorithm can work with any
orientation of the sensors.The gures depict that the obstaclesare detectedat the
samecorrect location irrespective of the orientation and mourting of the sensors.As
the sensorsare pointing far, in Figure 16, the obstacleis detectedat 18min front of
the vehiclewhereasin Figure 17 the detection distancereducesto 7m asthe sensors

are pointing more closerto the vehicle.
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Figure 17: Obstacledetection with sensorcon guration-2

The sensororientation independences adchieved becausethe algorithm doesnot need
to know the sourceof the sensordata, nor is the data bound to a particular sensor.
Data from all the sensorgs pooledinto a singlerepository, using thesepoints the

triangles are formedin the Step 3.3.

. Evaluation on Obstaclesof Di erent Shapes

Obstaclesof di erent shapes,viz cone,cylinder (pole) and cuboid were usedto
ewvaluate the a ect of shape of the obstacleson the algorithm. Also, the e ect of speed
of the vehicle on the detection rate of theseobstaclesis studied. Multiple runs were
madein the simulator on the sameroute changing nothing but the shape of the
obstacle.In ewery run the obstaclewas placedat the samelocation, 35 metersfrom the
starting point of the track. The top and bottom sensorswere pointing at 16.3and 16
meters. The simulated environment wason a at terrain and had no bumps, also, there
were no GPS related errors like GPS shift and GPS spike. In ewery run, the distance

from the vehicle at which the obstaclewas rst marked was usedto comparethe
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Table 5: Comparing runs with di erent obstacleshapes

Obstacleshape | Dimensions(m) Speed(m/s) | Distanceto obstacle(m) | Sub-madule
Pole (r,) = (0.1,3) 4 15.2 HD

Pole (r,) = (0.1,3) 10 14.6 HD

Cuboid (Lbb,h) = (1,0.3,1) | 4 15.8 AS, RS
Cuboid (Ibb,h) = (1,0.3,1) | 10 15.3 AS, RS
Cone (r) = (0.4,0.75) |4 15.6 AS, RS
Cone (r) = (0.4,0.75) | 10 15.0 AS, RS

results. Also, the correspnding sub-madule of the obstacledetection algorithm (high

absoluteslope (AS), high relative slope (RS) or height discortinuity(HD)) which was

responsiblefor the particular obstaclesto be detectedwas alsorecordedin table 5.

Table 5 depictsthat, amongthe three shapes,there is 4,3.2and 3.9 percert decrease

in the distanceof the detectedobstaclerespectively whenthe speedof the vehicle

increasedy 150percen. As more triangles could be formed on the surfaceof cuboid

than on a narrow cylinder, the AS and RS sub-mauleswere responsibleto detect a

cuboid as opposedto HD sub-madule being the primary onefor detecting the cylinder

(pole) type of obstacle. As more triangles could be formed on the surfaceof a cuboid

as comparedto a coneor a cylinder, the cuboid type obstaclesget detectedat 3.9

percen earlier than the cylinder and 1.2 percern earlier than the conetype obstacleat

4m/s. At 10 m/s the distanceto detect cuboid type obstaclesis 4.7 percen lesserthan

the cylinder and 2 percen lesserthan the conetype obstacle.

The e cien t and scalableimplemertation is due to two factors. First, in Step 3.3t is

not necessarythat the triangles be createdusing global points obsened by the sameLID AR.

The data may be from multiple LID ARs. The only requiremer is that the triangles created

satisfy the spatio-temporal constrairts. The secondfactor is that we utilize an e cient data
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structure for maintaining the 4-D space.Though the 4-D spaceis in nite, an e cient
represetation is achieved from the obsenation that only the most recer three secondsof
the spaceneedto be represeted. This follows from the temporal constraint and that one

point of ead triangle createdin Step 3.3 is always from the most recert scan.
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6 Conclusion and Future Work

6.1 Conclusion

This thesisdeweloped an algorithm for terrain mapping and obstacledetectionin o road
ervironmert. A scalable,robust and accuratetechnique for obstacledetection using LID AR
sensoris descriked. To recap,the following featuresof the Terrain Mapping Module enables

it to utilize bumpsto improve obstactle detection distance.
A rigid frame for mourting all sensors.

Fusing mutually consistem LID AR scanwith INS data basedon the time of

production of data.

Using 4-D spaceand spatio-temporal constraints for creating triangles to compute the

slope of locationsin the 3-D world.

The algorithm wastested on CajunBot, the nalist in the 2005DARPA Grand
Challenge,on CajunBot-2 - a 2004 JeepRubicon and in simulated ervironmert, the CBSim.
The algorithm was evaluated asthe vehicle was at various speedsfrom 3 m/s to 20m/s in a
stepof 1 m/s. Also, the e ects of the bumps on the algorithm was studied by post
processingthe Grand Challengedata and by creating speci ¢ test cases.The sensor
orientation independencewas studied in CBSim. The algorithm was also evaluated on
di erent obstacleshapesand a comparisonwas drawn.

The results shaved that the algorithm detects obstaclesfaster in the presenceof
bumps. The bumps did not causeany false obstacleseither. The results alsoindicated the
robustness,scalability and sensor-orietation independenceof the algorithm.

In the current implemertation every scanis time stamped with a singletime as

opposedto every beam. This could be a possiblesourceof error whenthe vehicleis moving
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at high speeds.It would be worth verifying the results basedon beamlevel time stamping.
In future it would be interesting to usemoving LID AR's to get a better 3-D point cloud and
test the algorithm. Further analysisof the 3-D point cloud to determinethe nature of

obstaclelike vegetation, rocks, bushes,etc, would be worth investigating.

6.2 Future Work

In the current implemertation ewvery LID AR scanis time stamped with a singletime as
opposedto every beam. This implies all the 180 beamsof a scanwould have the sametime
stamp. This is not accurateasthe scansare generatedat 75 hertz frequency The actual
time di erence betweenthe rst and the last beamof a scanis 0.013seconds.If the vehicle
is traveling at 25 m/s then it would have already moved by 0.33m betweenthe time of rst
and last beamsof a scan. Also, the INS provides vehicle orientation data at 100 hertz. In
caseof a bumpy terrain, the rst beamand the last onemay not be experiencingsame
bump. This would causean error in the global points computation (Step 3.2 in Figure 3). It
would be worth verifying the results basedon beamlevel time stamping.

Currently the LID ARs are statically mounted, they do not move. The static LID ARs
only scana singleline at a time limiting the areathat is scanned.If they were moving, the
LID ARs could potertially generatea better point cloud in terms of the areascanned.In
future it would be interesting to usemoving LID AR's to get a better 3-D point cloud and
test the algorithm.

Right now the algorithm can only detect if the a given surfaceis an obstacleor not.
It doesnot give any clue about the type of obstacle,like vegetation,rock etc. A foot long
grasscould be traversableby the vehiclebut not the samesizedrock. Further analysisof the
3-D point cloud to determinethe nature of obstaclelike vegetation, rocks, bushes,etc, would

be worth investigating.
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Abstract

Unmanned autonomous navigation in o -road conditions unfolds many interesting
challengesin the eld of obstacledetection and terrain mapping due to the
unstructured and unpredictable nature of the terrain. Simple issueslike the bumps
experiencedby the vehicle and sensorscomplicate the algorithms. Most of the
algorithms depend on sensorstabilization hardware like the gimbal and vehicle
suspensionsto dampen the vibration experiencedby the sensors.This not only
increasesthe cost of production of theserobots, but is also prone to medanical failures.

This thesis preserns an algorithm for terrain mapping and detecting obstaclesin
o -road environment using LID AR sensorswithout the needfor any sensor
stabilization and vehicle suspension. The algorithm's highlight is its ability to usethe
bumps experiencedby the vehicleto its advantage to detect farther obstacles.

The proposedalgorithm wasimplemernted on an Unmanned Autonomous Robot,

CajunBot, nalist in the DARPA Grand Challenge 2005.
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