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1 Introduction

1.1 Autonomous Ground Vehicle (AGV)

An Autonomous Ground Vehicle (AGV) is a fully automated vehicle that can travel

on a specific route on the ground without any human intervention.

Autonomous ground vehicles are already in use for space exploration, for example,

the NASA’s Mars Rover [8, 7, 6]. The Robot Sheepdog Project (RSP) developed by Silsoe

Research Institute in collaboration with the University of Bristol, University of Leeds, and

Oxford University uses autonomous vehicles to gather and maneuver a flock of ducks to a

predetermined location safely [22, 21, 23]. The Autonomous Crop Treatment Vehicle [18, 4]

developed by Silsoe Research Institute is used for treating crops with fertilizers and other

chemicals. PackBot Scout and Military R-Gator, developed by iRobot1, are commercial

military surveillance autonomous vehicles.

The research and development effort building AGVs so far has focused on developing

vehicles that operate on limited terrain conditions and on applications where speed is not an

important issue. These vehicles are not conducive for use in battlefields. The US Congress

has chartered the Defense Advanced Research Projects Agency (DARPA2) to bridge this gap

and produce AGVs that can be used in the front lines by 2015. To accelerate the research

and development of AGVs, DARPA conducted the DARPA Grand Challenge-20043

competition. The AGVs developed by the teams in this competition were expected to

complete a 210 mile off-road course from Barstow, California to Primm, Nevada in a

maximum time of 10 hours. To complete 210 miles within 10 hours the average speed of a

vehicle should be more than 20 miles per hour, a speed at which the vehicle needs a highly

1iRobot’s Military R-Gator, http://www.packbot.com.
2Defense Advanced Research Projects Agency, http://www.darpa.mil.
3DARPA Grand Challenge-2004, http://www.darpa.mil/grandchallenge.



sophisticated steering control algorithm to stay on the suggested path.

This thesis came about by attempting to develop a steering control algorithm for

CajunBot, a six-wheeled AGV developed by the University of Louisiana at Lafayette for the

DARPA Grand Challenge 2004. CajunBot, shown in Figure 1 was developed on a MAX IV

6-wheeled All Terrain Vehicle (ATV). The MAX IV ATV has three wheels on each side and

each set of these three wheels is controlled independently. The ATV is steered to the left by

locking or slowing down the wheels on the left. Steering to the right is achieved similarly by

locking the right set of wheels. The steering mechanism of CajunBot commonly referred to

as a skid steering mechanism is the same as that of an army tank or bulldozer.

Figure 1: Picture of CajunBot

1.2 Research Objectives

The objective of this research is to develop a steering controller for a skid-steered

autonomous vehicle, like CajunBot, with the following goals:

1. It should steer the vehicle to follow a path consisting of a sequence of GPS locations
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with minimal overshoot and oscillations;

2. It should be able to maneuver the vehicle at varying speeds;

3. It should not attempt turns that may be detrimental to the vehicle’s safety.

The challenges in achieving the above objectives can be placed in three categories:

1. challenges in developing any control system;

2. challenges in steering control of an automobile;

3. challenges specific to a skid-steered vehicle.

One common challenge in developing a control system is accounting for dead time.

This is the time elapsed between when a controller issues a command and when it receives

feedback about completion regarding the command. As the dead time increases, the control

problem becomes more difficult. As the controller may not have accurate information of the

execution status of its commands, it may make incorrect decisions and continue giving

commands to turn when the previous commands may have been sufficient to complete the

turn.

The control of an automobile at high speeds introduces more challenges. As the

speed increases the effect of the dead time becomes more pronounced. The vehicle would

have traveled a much greater distance during the delay, thus causing the vehicle to overshoot

or oscillate.

The steering control problem becomes more difficult for a skid-steered vehicle as the

speed and steering control for skid-steered vehicles are interdependent. The amount of

braking to be applied in order to achieve a turn varies with the speed of the vehicle.

A skid-steered vehicle’s steering behavior is more dependent on the terrain on which

the vehicle is traveling because of the very fact that the skid-steered vehicle skids on the
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ground surface in order to achieve a turn. Thus, a steering controller must also take into

account the characteristics of the terrain on which the vehicle is traveling.

1.3 Research Contributions

In this thesis we develop a Proportional Integral Differential(PID) control system

based steering algorithm for a skid-steered vehicle with the following properties:

1. it can steer the vehicle at varying speeds;

2. it ensures the vehicle safety by preventing sharp turns at high speeds;

3. it uses a prediction technique to prevent the vehicle from over steering during sharp

turns or while trying to align itself onto a straight line.

The steering algorithm has been validated empirically in a simulated environment

and on the real vehicle. The empirical results are presented in the thesis.

A small but significant side result from this thesis is an association of the general

control PID parameters Kp and Kd in domain specific terms to steering aggressiveness, and

maximum time to correct heading error. The association of parameters makes it easier to

tune the control parameters and to make the parameters dependent on speed.

Safety and prediction techniques are applied as a sequence of filters over the

computation from the PID equation. By separating these concerns in separate filters, the

PID control system is used more effectively by concentrating on only a small range of

heading errors and a high range of speeds.

1.4 Significance of the Research

There are three critical software modules of an autonomous vehicle:
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1. Obstacle detection;

2. Path planning;

3. Steering control.

The obstacle detection module detects the position of any obstacles in the path. The

path planning module builds a collision-free path around the obstacles. The control module

is responsible for driving the vehicle on the planned path.

Of the three modules, the steering control module plays the most crucial role because

in the absence of any obstacles in the path, an AGV can drive without the obstacle detection

module and the path planning modules but not without the steering control module.

1.5 Organization of the Thesis

Chapter 2 provides background information on CajunBot, an overview of automobile

steering mechanisms, control systems and Smith Predictors. Chapter 3 introduces the

proposed steering controller. Chapter 4 discusses the implementation and results of the

steering controller experiments. Chapter 5 gives the conclusions. Chapter 6 summarizes

some limitations of the proposed algorithm and potential future work to address these

limitations. The appendix provides the derivation of the PID controller.
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2 Background

This chapter provides an overview of CajunBot on which the present steering control

system is implemented. It also presents information regarding steering mechanisms and

control systems. Finally, it presents discussion on difficulties in designing a control system

for skid-steered vehicles in general and for CajunBot in particular.

2.1 CajunBot

CajunBot is built on a MAX IV 6-wheel all terrain vehicle with a 25 hp twin-cylinder

engine. The vehicle weighs 1,200 lbs. After adding additional fuel tanks, it has a fuel

capacity of 35 gallons and can travel at up to 35 mph.

The computing power of CajunBot is provided by two high-speed AMD computers,

several micro-controllers, and many custom circuits. CajunBot is equipped with two SICK

LMS 221 scanning laser systems, three Doppler radars, and sonar sensors. For geo-location,

vehicle orientation, speed, et cetera, it uses C-Nav differential GPS and an Oxford inertial

navigation sensor. A 2-kilowatt electric generator supplies the electrical power for the

computers, sensors, and other electronics.

2.2 Steering Mechanisms

The steering mechanisms used for maneuvering ground vehicles may be classified in

three categories: single-axle steering system, double-axle steering mechanism, and skid

steering. This section introduces each of these steering mechanisms emphasizing skid steering

mechanisms and highlighting the advantages and disadvantages of skid steering mechanisms.

In a single-axle steering system as shown in Figure 2, front wheels are pivoted while

rear wheels are fixed to the axle. This steering mechanism is most commonly used in



Figure 2: Single-axle explicit steering [15]

Figure 3: Double-axle explicit steering [15]

on-road vehicles. In a double-axle steering system as shown in Figure 3, both the front and

rear wheels are pivoted. The vehicle can make sharper turns when compared to the vehicle

with a single-axle steering system.
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A skid-steered vehicle, as shown in Figure 4, does not have axles connecting the left

and right wheels. Instead, all wheels on one side are connected via chains or other such

mechanisms. The wheels on one side can be rotated independent of the other side. The

vehicle may be turned by making the wheels on one side rotate faster than those on the

other side. The difference in rotation causes the vehicle to skid and turn in the direction of

the slow wheels; hence the term “skid-steer.”

Figure 4: Skid steering [15]

2.2.1 Advantages of Skid Steering

The advantages of skid-steer mechanisms are:

1. Skid-steered vehicles can maneuver effectively and exhibit agile maneuverability;

2. Skid-steered vehicles have greater traction on the surface that they travel, hence they

are best used when traveling on rough terrain.

2.2.2 Disadvantages of Skid Steering

Disadvantages of skid-steered mechanisms are as follows:
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Figure 5: Turns in skid steering [15]

1. Performance of a skid-steered vehicle strongly depends on the surface of the terrain

and speed of the vehicle;

2. Skid steering systems’ behavior is complex to model mathematically, because they

maneuver by skidding on the ground where the amount of the skid varies with the

surface of the terrain and the speed of the vehicle;

3. Skid steering imposes considerable stress on parts, like axles, joints, et cetera, that are

associated with the steering of the vehicle;

4. Wheels have considerable wear and tear due to skid steering. Skidding also damages

the surface of the terrain;

5. Speed and steering of skid steering systems are strongly dependent on each other. Any

attempt to maneuver the vehicle affects the speed of the vehicle and vice versa.
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2.3 Control Systems

A system responsible for controlling another system is called a control system. There

are two structures of control systems, namely, closed-loop control systems and open-loop

control systems.

Closed-loop control systems, as shown in Figure 6, have a feedback mechanism, where

the output from the control system is taken as input to controller. The controller uses this

output from the system to generate control commands for the next cycle. As shown in

Figure 7, open-loop control systems do not have feedback from the system’s output. It gives

the output commands as a function of its input. Open-loop controllers are most commonly

used for controlling servo-motors.

Figure 6: General architecture of a closed-loop control system

Figure 7: Open-loop control system

There are different techniques for implementing a control system [19]:

• PID: Proportional Integral Differential, or PID controllers, are the most common

controllers used in industrial applications. They are best suited for controlling a

complex system with a single control variable.
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• Neural Networks: A neural network can be trained to control a system. The entities

used for training the neural network are “input data” and “control commands,” where

control commands are used to control the system behavior for a given input. Neural

network controllers have the ability to learn from the controlling experience. They are

best suited for environments where multiple variables have to be tuned to control a

system system [1, 2, 10].

• Expert System: An expert system can be used to control a system. Control systems

designed from expert systems have the capability to learn from the experience. Expert

systems are efficient in decision making and do not have complex data processing.

Expert systems are suitable for simple decision making.

• Dynamic Matrix Control: Dynamic Matrix Control is a fixed process model control

technique designed for controlling multiple variables. These controllers involve

significant data processing.

Other control techniques include fuzzy logic, statistical process control, statistical

quality control and batch control.

We elaborate more on the PID technique since it forms the basis of our steering

controller.

2.3.1 PID Controller

PID controllers are the most commonly used controllers for industrial applications.

Two common applications of a PID controller are the thermostat and cruise control. A PID

controller is a closed-loop controller whose output control variable (dt) is based on the error

(e) between the user-defined set point and the measured process variable.
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The general form of a PID controller is:

d = Kpe + Ki

∫

edt + Kdde/dt (1)

The three terms of a PID controller give it its name, as described below:

• Proportional Term: The term Kpe has value proportional to the error e and is

referred to as the proportional term.

• Integral Term: The value of the term Ki

∫

edt is an integral of the error e. It sums up

small errors over time and produces control commands that will reduce the final error.

• Differential Term: The value of the term KDde/dt is a function of the differential of

the error e. It counteracts the Kp and Ki terms when the output changes quickly. It

helps reduce overshoot.

The variables Kp, Ki, and Kd are PID control parameters. The values of these

variables may be tuned to get the desired response for a given error (e) in the system.

There are two approaches for using a PID controller [14]. They are:

1. Absolute Approach: In the absolute approach, the controller generates an absolute

value for command dt in every iteration of the control loop as shown by the equation

below.

d = Kpe + Ki

∫

edt + Kdde/dt (2)

An absolute PID controller needs greater care for preventing spikes in its output as a

result of spikes in input which usually is due to errors.

2. Incremental Approach: In the incremental approach a change in the value of the
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command dt, referred as δd, is generated by the controller.

δd = Kpe + Ki

∫

edt + Kdde/dt (3)

An incremental PID controller is easier to tune for spikes in the input.

Some drawbacks of a PID controller are:

1. No method to calculate direct values for the PID parameter: The behavior of

a PID controller depends on its control parameters which needs to be tuned through

an iterative process, and it is not safe to tune these parameters on a critical system

like CajunBot, as performance of PID is not guaranteed during the tuning process.

2. No learning: The PID control parameters have to be tuned to a specific

environment. The control system does not learn. There has been some work on

designing self-tuning controllers [3]. While these systems have demonstrated success,

the self-tuning can take significant time.

3. Specific to environment: The performance of a PID controller is dependent on the

environment for which it is designed. A change in the environment demands tuning

the PID control parameters for new environments. For example, a PID steering

controller tuned for a cemented road may not efficiently control the vehicle on grassy

surfaces. One can use a look up table with a set of PID variables for different

environments at the cost of increased complexity and overhead of determining PID

control parameters for each possible environment.

4. Does not handle input error: A PID controller assumes that the input data are

accurate, it does not handle input errors (fluctuating or spiking input data).
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2.4 Smith Predictor

The time lag between issuing the control commands to the system and getting the

feedback about the implementation of these commands is called dead time. Dead time is the

result of accumulation of lags introduced by various elements in the control loop. Some of

the contributors to dead time are measurement lags, computation lags, communication lags,

and implementation lags.

Dead time is a common phenomenon found in any control system [5]. The presence of

time-delay in the control loops has two major consequences. It greatly complicates the

analysis and design of the feedback controller for such systems. It makes satisfactory control

more difficult to achieve.

To overcome these drawbacks, Smith [16] presented a control scheme which has the

potential of improving the control of loops with a time-delay. This scheme is known as the

Smith Predictor or Smith dead-time compensator. Figures 6 and 8 show the general

architecture of a control system with and without a Smith Predictor.

A Smith Predictor, shown in Figure 8, sits in the feedback part of the control loop. It

takes the input values from the sensors and predicts what those values would be after the

dead time. The prediction requires a mathematical model representing the behavior of the

system. The controller then uses the predicted values to compute the control output,

thereby compensating for the dead time (refer [5] and [12]). A Smith Predictor may be used

in conjunction with any control algorithms [11, 13, 20, 17, 9] (refer to Figures 6 8).

2.5 Issues in Steering Control

The difficulties in developing a steering control system for skid-steered vehicles may

be summarized as follows:
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Figure 8: General usage of Smith Predictors in control systems

1. Industrial control mechanisms like PID control cannot be easily used for controlling

skid-steered vehicles as the behavior of the vehicle changes with the terrain on which it

is traveling and with the variation in speed of the vehicle. This demands having

different PID control parameters for different environments;

2. Application of both left and right brakes simultaneously during an attempt of a turn

can cause the vehicle to slow down unintentionally;

3. Speed of the vehicle and steering reactions are inter-related, which makes the steering

controller harder to control the vehicle at different speeds.

In addition to the above issues, the following issues are introduced due to the design

of CajunBot:

1. Slow responding hardware: CajunBot’s steering system consists of a left brake and

a right brake, each controlled using slow moving hydraulic actuators. Thus the control

system has a high dead time, making it more difficult to steer without oscillations or

overshoot.

2. No feedback from the brake system: CajunBot’s steering system lacks feedback

about the position of the brakes. The steering controller needs to know the extent to
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which brakes are applied at any given instance in order to decide whether it should

release the brake or pull it to maneuver the vehicle in the desired direction. In the

absence of feedback from the brake system, the steering controller needs to estimate

the extent of braking that is applied. This estimation is not error free, and degrades

the performance of the steering controller.
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3 Steering Controller

This section introduces the proposed steering controller and explains the different

components of the steering controller.

3.1 Steering Controller

A control system designed to steer an AGV is called a steering controller. Figure 9

presents a level zero data flow diagram of a steering controller. This is the black box view of

the controller. It takes as inputs the position and orientation of the vehicle along with the

start and end positions of the expected straight line path. When the vehicle is not on the

path or is not oriented along the path, the steering control algorithm determines the

commands needed to bring the vehicle back on the path. The steering controller consists of

the following three modules:

1. Vehicle Control Strategy;

2. Steering Algorithm;

3. Skid Steering Commands.

Figure 9: Level 0 data flow diagram of steering controller

There may be different strategies to steer a vehicle when it deviates from the

expected path. One strategy is to bring the vehicle back on the path as soon as possible.



Figure 10: Level 1 data flow diagram of steering controller

Another strategy is to steer the vehicle directly to the end position of the path. The vehicle

control strategy module determines the strategy for correcting the deviation from the

expected path. It computes the correction in terms of heading error which is the angle the

vehicle should turn to correct its deviation.

The steering algorithm takes the heading error and computes steering commands to

reduce this error. Besides heading error, the steering algorithm must also consider the safety

of the vehicle and dead time in the feedback system. The steering algorithm’s output is

independent of the steering mechanism. The skid steering command module translates the

turn commands generated by the steering algorithm into left and right brake commands for

a skid steering.

Generic Steering Command: The Steering Algorithm generates its generic steering

commands in terms of a variable called “steering direction” (dt), which takes values between

-1 to +1. If the value of dt is negative, the steering controller commands the vehicle to turn

left by applying left brakes. Similarly for positive values, it commands the vehicle to turn

right by applying right brakes. For the value of zero, no brakes are applied. When no brakes

are applied, the vehicle makes no turns. The absolute value of dt represents the magnitude
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of the amount of left or right braking to be applied.

In the following section we discuss the above mentioned three modules of the steering

controller. These are the vehicle control strategy, the steering algorithm, and the skid

steering commands.

3.2 Vehicle Control Strategies

For the given goal position that the vehicle needs to travel, the vehicle control

strategy plans the path to follow in order to reach the goal position. Two vehicle control

strategies were implemented for CajunBot. These are ”way-point” mode and

“follow-the-carrot” mode. There are other vehicle control strategies like “pure-pursuit” and

“screw theory” control on which the proposed algorithm was not tested.

1. Way-point Mode: This approach is based on the concept of driving the vehicle

directly to the goal position. As shown in Figure 11, the angle between the present

orientation of the vehicle and the line joining the vehicle position to the goal position

is calculated as heading error.

2. Follow-the-Carrot Mode: This approach is based on the concept of driving the

vehicle on a straight line path to a point (x-track point) which is some

look-ahead-distance away from the vehicle’s projected position on the line joining the

previous and next goal positions.

The vehicle’s position is projected onto the line joining the previous and next goal

positions (see Figure 12). A point at a look-ahead-distance away from this projected

point on the line joining the previous and the next goal position, toward the next goal

position is defined as a carrot point. The heading error of the vehicle is now defined as
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Figure 11: Illustration of the “Way-point” mode steering control strategy

the angle between the vehicle’s current orientation and the orientation of the line

joining the vehicle to the carrot point.

3.3 Steering Algorithm

The steering algorithm is responsible for driving the vehicle along the path suggested

by the vehicle control strategy. It achieves this by attempting to minimize the instantaneous

heading error as computed by the vehicle control strategy module. As shown in Figure 13

the steering algorithm has three components, they are:

1. PID controller;

2. Safety filter;

3. Prediction filter.
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Figure 12: Illustration of the “Follow-the-carrot” mode steering control strategy

Figure 13: Level 2 components of steering algorithm.

The PID controller determines the steering commands needed to minimize the

heading error of the vehicle. These control commands are bounded by the safety filter that

keep the rate of change of steering commands within acceptable safety limits of the vehicle.

This filter plays an important role while controlling an AGV that is traveling at high speeds.

The prediction filter addresses the issue resulting from dead time. This filter predicts

the time (tturn) that the vehicle would take to complete its turn and issues commands to

release the steering in just enough time to account for the dead time. The prediction filter
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expects that by the time the steering control implements the commands to stop turning, the

vehicle would reach the desired orientation.

3.3.1 PID Controller

The PID controller uses the incremental form of PID equation. The incremental

approach is very compatible with use of the safety filter. Safety is compromised when the

incremental change in steering is greater than what a vehicle can safely tolerate.

The PID equation is given below.

η(het) = Kphet + Ki

∫

hetdt + Kdde/dt (4)

The equation computes δdt, the change in steering direction at time t, as a function

of heading error het. The terms Kp, Kd and Ki are PID control parameters. The derivation

of this PID equation can be found in Appendix 1.

3.3.2 Safety Filter

When the vehicle is traveling at high speeds, it is necessary to ensure that the

vehicle’s orientation is changed at a safe rate. We achieve this by limiting the rate at which

the term “steering direction” (dt) is incremented or decremented by α, the maximum safe

rate to turn. Where α depends on the speed of the vehicle. The function ζ, below, bounds

the η(het) computed by the PID equation.

ζ(x) =































+α If x > α

−α If x < −α

x otherwise
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3.3.3 Prediction Filter

The steering control system of any AGV will have significant dead time typically

associated with moving mechanical components for changing the direction of the vehicle.

If the steering control system waits until the heading error has become zero (i.e., the

vehicle is in the desired orientation), the vehicle would overshoot leading to heading error in

the opposite direction. The overshooting phenomenon will repeat at every correction,

causing the vehicle to oscillate over the desired path. The prediction filter solves this

problem by issuing steering commands to stop turning before the desired orientation is

reached. It predicts the amount of time (Tturn) that the vehicle would take to reach the

desired orientation and also predicts the amount of time (Trelease) that steering control

hardware (left or right brake) will take to release its brakes to stop turning the vehicle. If

Tturn is smaller than or equal to Trelease it commands the steering control hardware to stop

turning, that is, release appropriate left or right brake, as shown in the following equation.

ρ(x) =































+α If (Tturn < Trelease) && (dt < 0)

−α If (Tturn < Trelease) && (dt > 0)

x Otherwise

where Tturn and Trelease are given by following equations:

Tturn =
Heading error

Angular velocity
(5)

Trelease =
|dt|

α
(6)

The filter produces a positive correction (+α) when the steering direction is negative

(dt < 0) and a negative correction when the steering direction is positive. The correction is
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opposite of the steering direction because the filter is attempting to stop the turn.

3.3.4 Final Equation

The following equation specifies the steering incremental ∆dt. It combines the factors

of safety and prediction with PID control.

∆dt = ρ(ζ(η(het))) (7)

ρ(ζ(η(het))) =































































+α If (Tturn < Trelease) && (dt < 0)

−α If (Tturn < Trelease) && (dt > 0)

+α If η(het) > α

−α If η(het) < −α

η(het) Otherwise

3.4 Skid Steering Commands

The skid-steered vehicle accepts steering control commands that specify the amount

that the left and right brakes are to be applied. These commands are generated by the

steering algorithm module. They are expressed in terms of “steering direction” (dt). These

are then converted to low level steering commands. Computation of these control commands

is specified in the following equations.

Leftbrake =















|dt| |dt| ≤ 0

0 otherwise

rightbrake =















dt |dt| > 0

0 otherwise



4 Insight into the Steering Controller

This section provides a discussion about the parameters for tuning the proposed

steering controller. It gives insight into which filter takes control during the course of

steering. Finally, it compares the proposed steering controller with a pure PID controller.

4.1 Tuning the Algorithm

The behavior of the steering algorithm depends on the values of the parameters Kp,

Kd, Ki and α. The first three parameters are control parameters of the PID equation. The

last parameter, α, is a parameter of the safety and prediction filter.

There are mathematical models available that describe the effect of Kp, Kd, and Ki.

The values of these variables affect the time it takes the system to converge to a steady

state, the amount of overshoot leading to errors in the opposite directions, and the amount

of oscillation.

These mathematical models give insight into the effect of these parameters but the

models are for an idealized system. The model cannot directly be used to “derive” the ideal

values of Kp, Kd, and Ki. As is common with control systems, the values of these

parameters is determined empirically, by observing how a system behaves with different

combinations of values. Tuning the values of Kp, Kd, and Ki becomes more difficult because

of their interdependent effects. Their interdependence makes it difficult to associate these

parameters to their effect on the steering.

When we reason about the behavior and performance of the steering, we use the

following properties:

Aggressiveness(β): How aggressive is the vehicle in attempting to correct the

heading error?
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Time to correct(γ): What is the maximum acceptable time in which the vehicle

may correct its heading error?

The PID parameters are then defined as:

Kp =
β

γ

Kd = β

Ki = 0

Thus our steering controller now can be rewritten to depend on three parameters α,

β, and γ all of which are defined in terms of the desired effect on the steering. These

parameters are still interdependent; their influence on the vehicle is easier to predict.

4.2 Influence of the Filters

The steering commands generated by our controller may be attributed to one of the

three functions:

1. the PID controller (η);

2. the safety filter (ζ);

3. the prediction filter (ρ).

It is instructive to know the source of the steering command at various stages as an

AGV changes direction. Figure 14 plots the heading error over time as the vehicle travels

along a simple route specified below.

Go straight 5 meters.

Turn right by 45 degrees.
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Go straight 30 meters.

Turn left by 45 degrees.

Superimposed on the plot of heading error are annotations representing the function

that generated the command. The sudden change in heading error at time 73 seconds

happens when the vehicle traveled five meters and should make a 45 degree turn to the right.

The plot shows that at that instant, the AGV determined it should turn 45 degrees. The

steering commands used by the vehicle were generated by the safety filter. This indicates

that the commands generated by the PID control may have been unsafe for the vehicle.

The vehicle continues to use commands from the safety filter until the heading error

reaches 0.4. At this point, the source of the steering command changes to the prediction

filter. This implies that the steering controller has determined it would be prudent to stop

turning based on the vehicle’s present speed and orientation. This effect may be seen in the

change of slope of the heading error.

The vehicle overshoots and goes too far to the right. Thus it has a heading error in

the opposite direction. The safety filter again overrides the PID control commands.

The vehicle oscillates between steering left and right. While this happens, the source

of the commands changes from the safety filter to the prediction filter. As the oscillations

dampen, the commands from the PID control function begins to take effect. This increases

the rate of dampening, eventually bringing the heading error to zero.

4.3 Comparison with a Pure PID Controller

PID controllers have been used in industrial control for a long time. They have been

designed to address concerns, such as overshoot, oscillations, and time to convergence. It

would stand to reason that one can build a steering algorithm by using just a PID controller,

without the steering and prediction filters.
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Figure 14: Illustration of the source of the steering commands
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In this section we discuss the augmentation of a PID controller with safety and

prediction filters.

The advantages of the safety filter are discussed first. Once an autonomous vehicle

reaches a way-point, it must turn towards the next way-point. The amount of turn is

indicated by heading error. This is the difference between the vehicle’s heading and the

orientation to the next goal. When the turn is sharp, the heading error will be high and a

PID controller may attempt to compensate for this heading error by generating steering

commands to make a sharp turn. If the command to turn is greater than what the vehicle

can maneuver, vehicle safety may be jeopardized.

The goal is to prevent the PID controller from producing commands for sharp turns

for high heading errors. This can be achieved by decreasing the values of Kp. However, such

a decrease will also yield a proportional decrease in the effective steering commands for low

heading errors. Even though the integral term Ki takes control for small errors, the term

really gains weight after the integral sum of the errors reaches a substantial value. Thus

could lead to delay in the vehicle reaching a stable state, thus endangering the vehicle when

traveling at a high speed through a narrow corridor.

We now discuss the advantages of the prediction filter. The prediction filter accounts

for the dead time in the steering control system. When it determines that the vehicle will

reach the desired orientation with the commands already issued, it overrides the PID

controller and initiates commands to stop turning.

A PID controller achieves similar functionality by using an appropriate Kp such that

the command to turn reduces as the heading error reduces. However, the time it will take

for the vehicle to reach a desired orientation depends on the vehicle speed.

A PID based steering controller will depend entirely on heading error, because this is

what it is attempting to reduce. The PID controller may be tuned to have the same effect as
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the prediction filter for a certain speed. However, when the speed is increased or decreased,

the steering control will be suboptimal. This can be overcome by maintaining different PID

parameters for different speeds. This has the disadvantage of increasing the complexity of

the algorithm and the process of tuning the controller.
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5 Empirical Evaluation

This section presents the results of empirical evaluation of the proposed steering

controller. The controller was evaluated in a simulated environment.

5.1 Experimental Design

The purpose of the experiment is to study the effect of the safety and prediction

filters to validate whether they achieve the objectives of safe navigation of the vehicle

without oscillations at varying speeds.

5.1.1 Procedures

The experiment was performed by using the steering controller to steer a computer

simulation of CajunBot. The simulated vehicle was built using ODE (Open Dynamic

Engine). ODE is a physics engine used for building computer games. It is here used to

simulate some of the vehicle physics of CajunBot in a virtual environment. Like the real

vehicle, the simulated vehicle has two sets of wheels, where each set can be controlled

independently. The simulated brake system is used to reduce the speed of wheels. When

both wheels are free, a force can be applied to the vehicle in forward direction to move the

vehicle forward. When one set of wheels is braked and a force is applied, it turns along the

direction of the braked wheels. Thus, the virtual robot simulates a skid-steered vehicle.

5.1.2 Independent Variables

The steering algorithm has two filters. These are safety and prediction. We wish to

study the effect of each filter independently. This gives us two variables “safety and

prediction,” each with two values “on” and “off.” Since we wish to study the steering



controller at varying speeds, the vehicle’s speed is an independent variable. While the speed

can be any numeric value, we restrict its values to 1m/s, 2m/s, 3m/s 4m/s.

Our interest is in studying how the steering controller turns a vehicle. The turning of

a vehicle may be described in degrees from 0 to 360, along left and right directions. We

restrict the turn angles to 45◦ and 90◦, for both left and right directions. Figure 15 shows a

track with all the four turns.

The route specifies that the vehicle should travel five meters, turn right by 45

degrees, travel 30 meters, turn left by 45 degrees, travel 30 meters, turn right by 90 degrees,

travel 30 meters, turn left by 90 degrees, and finally travel 30 meters.

In addition, the PID controller has three parameters Kp, Kd, and Ki. In our

controller Ki = 0, leaving two variables Kp and Kd, each with a numeric value. The choice

of the values of Kp and Kd affect the controller, so it is not appropriate to fix their values to

a small set. Instead we find the combination of values of the PID parameters that gives the

best results for a specific speed (1m/s) on the track of Figure 15 for each combination of the

safety and prediction variables. This gives us the Kp and Kd values to use for each

combination of safety and prediction at higher speeds.

5.1.3 Dependent Variables

The steering controller attempts to reduce the heading error. Thus, the heading error

is an independent variable.

Our goal is to ensure vehicle safety, reduce overshoots, and reduce oscillations.

Vehicle safety can be assessed by rate of change of heading. Rate of change above a certain

threshold will jeopardize vehicle safety. Overshooting a turn can be measured by the change

of heading error in the opposite direction of the turn. Oscillations can be measured by the

number of times a vehicle’s heading error changes signs before becoming zero (or close to

32



Figure 15: Suggested path for the experimental runs shown in Figure 16, 17, 18, 19

zero).

Thus, the heading error of the vehicle over time is sufficient to evaluate the

performance of the algorithm for safety, overshoot and oscillations.

5.2 Data Analysis

The simulated CajunBot was run on the route shown in Figure 15 for each

combination of the following values of the independent variables:

Speed: 1m/s, 2m/s, 3m/s, 4m/s;

Safety: on, off;

Prediction: on, off.

The values of Kp and Kd for which the vehicle performed best at a speed of 1m/s for a

particular combination of value of safety and prediction were then used at higher speeds for
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Independent Variables Dependent Variables
Figure Number Safety Filter Prediction Filter Overshoot Oscillations
Figure 16 off off yes moderate
Figure 17 off on no no
Figure 18 on off yes high
Figure 19 on on yes no

Table 1: Description of the graphs

the combination of safety and prediction.

Figures 16, 17, 18, 19 plot the heading error (y-axis) over time (x-axis) for the four

values of safety and prediction at a speed of 4m/s. As the performance of the vehicle

decreases with increasing speed, the plots for 4m/s are instructive of the change in

performance at higher speeds.

In each of the Figures 16 to 19, the labels A, B, C, D, E, and F represent the position

of the vehicle as indicated on the route drawn in Figure 15. The values of safety and speed

used for these plots are summarized in Table 1.

Table 1 summarizes the performance of the controller for each combination of safety

and prediction. The table shows that the vehicle oscillate when the prediction filter is turned

off and does not oscillates when the filter is turned on. This is as expected, since the PID

controller does not account for the dead-time.

The vehicle also overshoots when the prediction filter is turned off. This, again, as

expected. When the prediction is turned on and safety is turned off, the vehicle does not

overshoot either. The vehicle overshoots when the safety filter is turned on along with the

prediction filter. At first glance this appears anomalous. When the prediction filter is turned

on, one would expect it to compensate for dead time and reduce overshoot. The result,

however, can be explained by the fact that the safety filter overrides the prediction filter. It

indicates that when the safety filter is off, the vehicle does not overshoot, but at the expense

of jeopardizing vehicle safety. When the safety filter is turned on, it restricts the rate of turn
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Figure 16: Heading error for safety off and prediction off
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Figure 17: Heading error for safety off and prediction on
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Figure 18: Heading error for safety on and prediction off
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Figure 19: Heading error for safety on and prediction on

to safe limits, causing the vehicle to overshoot.

The combination of turning on safety and prediction thus gives the best results. It

does overshoot, but does not have oscillations. This implies the vehicle overshoots only to

ensure safety of the vehicle, and then it quickly converges to the correct orientation.
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6 Conclusions and Future Work

This thesis developed a steering controller for a skid steered vehicle. The controller

navigated the vehicle at varying speeds while ensuring its safety, minimizing oscillations and

minimizing overshoots. The controller was developed by augmenting the classic PID

controller commonly found in industrial control systems. The classic PID controller was

augmented by introducing two filters. These were the safety filter and prediction filter.

These filters override the commands generated by the PID controller. The prediction filter

compensates for dead time in the control system. It predicts when the vehicle is expected to

complete a turn and overrides the commands of the PID controller and tells the steering

control to stop turning. The safety filter overrides both the PID controller and the

prediction filter when it deems that the rate of turn is detrimental to the vehicle’s safety.

The proposed steering algorithm was evaluated using a virtual simulated skid-steering

vehicle implemented using Open Dynamics Engine. The effect of the individual filters was

studied by driving the simulated vehicle with four separate experimental controllers that

were obtained by separately turning each filter on and off. The vehicle was driven at four

speeds, from 1m/s to 4m/. A speed of 1m/s was used to tune the PID control variables.

The results show that the prediction filter reduces vehicle oscillations. When the

filter is turned on, the vehicle does not oscillate while correcting a heading error, whether or

not the safety filter is turned on. When the prediction filter is turned off, the vehicle

oscillates from left to right and back attempting to orient in the desired direction.

With the prediction filter turned on the vehicle does not overshoot if the safety filter

is turned off. If the safety filter is turned on the vehicle overshoots the turn, but does not

oscillate. The overshoot of a turn to ensure safety of the vehicle proceeds as desired.

In our current work, the PID control parameters and the safe rate of turn has been



treated as constant. An alternative would be to make these parameters a function of speed.

Tuning the parameters as a function of speed may be worthy of further investigation.
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Appendix

1. Derivation of PID controller for steering

The first steering controller I implemented was based on the absolute PID control

equation. I found it difficult to tune the PID control parameters, so I reverted to

implementing a steering controller based on my intuitive understanding of steering. My

steering controller, which I termed “progressive controller” worked very well and I had

higher confidence in tuning it.

When I began writing this thesis I had to compare the progressive controller to the

PID controller. To do the comparison I started tweaking the equations of the progressive

controller to identify terms of the equation that matched the PID equation, and the terms

that were different. To my surprise I found that I had reinvented the PID equation. The

simplified equation of the progressive controller had a proportional and differential term,

just like the P and D terms of the PID equation.

The experience was discouraging for the obvious reason that I had simply reinvented

a work straight out of the control system textbooks. It was also enlightening in that now I

had a better “gut-level” feeling of PID control equations. More importantly, now I also had

a definition of the PID parameters in terms of parameters that were more intuitive in the

context of steering.

In this appendix, I describe the derivation of the progressive controller and its

mapping to the PID controller. This mapping may be instructive to others working on

similar problems.



Table 2: Basic functions

Function Description
Location P Location represented with three tuple x, y, z
Azimuth z(P1, P2) Angle formed by line joining P1, P2 w.r.t reference axis

2. Preliminaries

Steering control takes as input, position (P b
t ), heading (ht), and speed of the vehicle

(st), along with the previous way-point (P i
t ) and the next way-point (P i+1

t ) (as shown in

Figure 9). It computes steering controls commands to drive the vehicle to the next

way-point.

Steering Direction: The concept of using a steering direction (dt) representation is

one of the important features of this control system. It is a common representation that can

be converted to low level steering commands for different steering mechanisms such as skid

steering versus explicit steering.

Steering direction (dt)(refer Table 4) takes values in interval [-1,+1]. Negative values

represent steering control commands to turn left. Positive value represent steering controls

commands to turn right. A value of zero represents the steering controls commands to make

no turns.

Location (Pt) represents the position of the vehicle or position of the way-point using

three tuple (Px, Py, Pz) (refer Table 2). This steering control algorithm has three controlling

parameters α, β, and γ (refer Table 3). Parameter α represents the maximum rate at which

steering controls can be altered assuring the stability of the vehicle by considering the issues

like speed of the vehicle. Parameter β represents how aggresive the steering controller should

be in correcting a heading error. Parameter γ represents the time in seconds within which

the heading error (het) be should be corrected. β can be a function of γ.
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Table 3: Vehicle parameters

α Maximum safe rate to turn
β Aggressiveness
γ Time to correct heading

Table 4: Instantaneous measures at time t

Heading Angle ht

Heading Error het

Position of previous goal P i
t

Position of vehicle P b
t

Position of next goal P i+1
t

Steering direction dt

Azimuth: Function azimuth z(P1, P2) (refer Table 2) calculates the angle of

orientation of the line joining points P1 and P2 with respect to the reference axis.

Heading convention: The algorithm is not bound to a particular heading

convention but it would be easier to explain the algorithm using an assumed heading

convention. The heading angle is zero to the east and increases in the counter clockwise

direction.

3. Progressive Steering Controller

From the position of the vehicle (P b
t ) (refer to Table 4) and the position of the next

way-point (P i+1
t ), calculate the desired heading using Equation 8.

desired heading(t) = z(P b
t , P i+1

t ) (8)

The difference between the desired heading and the present heading of the vehicle (ht) gives

the heading error as shown in Equation 9. We set the desired heading rate (refer to
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Equation 10) to the heading error divided by time(γ) within which we expect to correct the

heading error.

heading error(t) = z(P b
t , P i+1t) − ht (9)

desired heading rate(t) =
z(P b

t , P i+1
t ) − ht

γ
(10)

The present heading rate of the vehicle is the angular velocity at which the vehicle is turning

and is calculated using the Equation 11.

present heading rate(t) =
∆ht

∆t
(11)

The difference in the desired and the present heading rates is given by Equation 12.

difference heading rate(t) =
z(P b

t , P i+1
t ) − ht

γ
−

∆ht

∆t
(12)

The steering direction dt is changed by ∆d. This is calculated using the Equation 13.

δdt = (
z(P b

t , P i+1
t ) − ht

γ
−

∆ht

∆t
) ∗ β (13)
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4. Conversion of the Progressive Algorithm to PID Form

Let us denote the desired heading, z(P b
t , P i+1

t ), by xt, and rewrite Equation 13 as

δdt = (
xt − ht

γ
−

∆ht

∆t
) ∗ β (14)

Where ∆ht = ht − ht−1. Adding and subtracting xt − xt−1 to ∆ht, we have

∆ht = (xt − xt−1) − ((xt − ht) − (xt−1 − ht−1)) (15)

∆ht = ∆xt − (het − het−1) (16)

∆ht = ∆xt − ∆het (17)

Using the definition of ∆ht from Equation 17 in Equation 14 we get

δdt = (
het

γ
−

∆xt − ∆het

∆t
) ∗ β (18)

Re-arranging the terms yields the equation below.

δdt =
β

γ
∗ het + β ∗

∆het

∆t
− β ∗

∆xt

∆t
(19)

The general PID control equation is given below.

δdt = KP ∗ het + KD ∗
∆het

∆t
+ Ki ∗

∫

het (20)

Let us compare Equation 18 with Equation 20. Equation 19, and 20 each have an

proportional (het) and differential (∆het

∆t
) terms, but Equation 19 has one additional term

45



Table 5: Comparison of PID parameters and steering controller parameters

KP = β

γ

KD = β
Ki = 0

β ∗ ∆xt

∆t
and the Equation 20 has the term Ki ∗

∫

het. Table 5 gives mapping that relates the

terms of the two equations, leaving only the β ∗ ∆xt

∆t
of Equation 19 unmapped. The term

∆xt represents the change in desired heading that increases its value when the vehicle is

going off the road. On plotting the value of this term during the course of a run, it is seen

that this term has almost zero value all through the run except when there is a change in

goal position, when it takes a spiking large value (as desired heading changes with change in

goal position). Hence we ignore this term.
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Abstract

There are three major software components in an Autonomous Ground Vehicle (AGV).

These are the obstacle detector, the path planner, and the steering controller. The obstacle

detector uses sensor data to identify unnavigable areas on the terrain. The path planner

computes a path around the obstacles. The steering controller generates commands for the

vehicle to follow the planned path. Of the three components, the steering controller is the

most crucial. Without a proper steering controller the vehicle cannot even travel a

completely pre-planned path that is devoid of any obstacles.

This thesis presents the steering controller of CajunBot, a six-wheeled all terrain

vehicle (ATV) that uses skid-steering for turning. The steering controller was developed

with the objectives of navigating a skid-steered vehicle at varying speed with minimal

overshoots, minimal oscillations, and ensuring the vehicle’s safety.

The proposed steering controller consists of a PID controller with two filters, a

prediction filter and a safety filter. These filters are placed in succession. The prediction

filter compensates for dead-time in the control system. It overrides the commands generated

by the PID controller when it deems that the commands already given are sufficient to

complete the turn. The safety filter ensures that the rate of turn of the vehicle does not

cross a given threshold. This filter overrides the output of the PID controller and the

prediction filter.



Empirical observations in a simulated model of CajunBot show that the inclusion of

the prediction and safety filter does help in achieving the objectives of the steering

controller. Removing any one or both of these filters has a negative effect on the

performance of the vehicle. By separating the concerns of safety and prediction in separate

filters, the PID control system is used more effectively by concentrating on only a small

range of heading errors and a high range of speeds.
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